問題番号002 解答編




Ⅰ.ⅰ 円錐のにおいて、上図のようにA,B,Cをとり、ABと球の接点をD、BCと球の接点をE、球の中心をO、半径をrとする。
問題文より、AB=3k  BC=2k (kは比例定数)なので、BE=kである。

ⅱ△ABEと△AODにおいて
∠AEB=∠ADO=90°(円の接線より)、 ∠BAE=∠OAD (共通の角) より、それぞれの2つの角が等しいので △ABE∽△AODとなる。

Ⅱ.ⅠよりAB:BE=AO:OD、 よって3k:k={2√(2)k-r}:rなので、
3kr=2√(2)k^2 -kr
3r=2√(2)k-r
4r=2√(2)k
r=k/√(2)となる。

Ⅲ.円錐の表面積において

底面部分の面積はk^2 π。
扇形の弧の長さは2kπであるから、この扇形は半径3kの円の 1/3の大きさとわかる。
したがって、扇形の面積は 1/3 ・ 9k^2 π =3k^2 π。
よって円錐の表面積は 4k^2 πとなる。

Ⅵ.球の表面積において
Ⅱより、球の半径が k/√(2) なので、表面積は 4πr^2 = 4π ・ k^2 / 2 =2k^2 πとなる。


以上のことより、円錐と球の表面積の比は 4k^2 π : 2k^2 π =2:1。

答え: 円錐の表面積:球の表面積= 2:1

戻る